
Spin-imbalances in non-magnetic nano-systems:

Using non-equilibrium Green’s function DFT to

model spin-selective phenomena mediated by

spin-orbit coupling.

W. Dednam1,2, Linda A. Zotti3, S. Pakdel4, E. B. Lombardi1 and J. J.
Palacios5

1 Department of Physics, Science Campus, University of South Africa, Private Bag X6,
Florida Park 1710, South Africa
2 Departamento de F́ısica Aplicada and Unidad Asociada CSIC, Universidad de Alicante,
Campus de San Vicente del Raspeig, E-03690 Alicante, Spain.
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Abstract. Heavy transition metals are frequently used as electrodes and substrates in
scanning tunneling microscopy experiments. In the constricted low dimensional systems that
occur in such experiments, typically under conditions of non-zero bias voltage, spin-imbalance
may develop even in non-magnetic atomic- and nano-systems. This phenomenon arises as
a result of spin selective effects mediated by spin-orbit coupling. It is important to not only
understand the emergence of the spin imbalance, but also to model associated properties such as
spin-polarized electron transport in these systems. Conventional theoretical approaches cannot
model these effects because they usually neglect spin-orbit coupling. Therefore, to model spin-
imbalance in the electronic transport of constricted nano-systems, such as in atomically sharp
transition metal electrode tips or surfaces, as well as in organic molecules bridging the electrode
tips, we have implemented spin-orbit coupling as a post-self-consistent correction in atomic
orbital basis density functional theory within the non-equilibrium Green’s function formalism.
Our method takes advantage of optimized Gaussian orbital basis sets and effective core potentials
and one-shot transport calculations with steady convergence and charge transfer properties
compared to other similar approaches. We apply this method to a selected number of sample
constricted low dimensional systems where spin-imbalance is important by performing density
functional transport calculations. This permits us to demonstrate that incorporation of spin-
orbit coupling is essential to understanding emergent spin-imbalance in molecular electronics,
while in certain instances, the consideration of the applied bias is also important to the
manifestation of spin imbalance phenomena in heavy transition metal electrodes and substrates.
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1. Introduction
Spintronics is a promising field in which the electron’s spin is used to process and store
information as an improvement on the present use of its charge to accomplish those same tasks
[1]. Recently, spin-orbit coupling (SOC) has been proposed as an explanation for spin-polarized
currents in molecular junctions [2, 3, 4, 5], which, in the simplest possible arrangement, consist of
two nano-sized transition metal electrodes bridged by freely-suspended chiral organic molecules
(molecules which have non-superimposable mirror images), typically in the scanning tunneling
microscope (STM) setup [6, 7]. In practical applications, spin-selective molecular nano-junctions
could serve, for example, as spin-current rectifiers in novel spintronic molecular devices, due to
the so-called chirality induced spin selectivity (CISS) effect.

There still exists, however, a controversy surrounding the exact origin of the CISS effect:
is it due to spin-locking along the twisting chiral molecule in which orbit moments on the
molecule’s atoms favour the transport of one spin orientation over another [2], or does the
molecule inherit SOC from the heavy transition metal electrodes such that spin-filtering rather
take places at the interface between metal electrode and molecule [3, 4, 5]? To answer this
question from a theoretical perspective, it is at the very least necessary to model SOC properly
and conveniently in electronic transport calculations based on density functional theory (DFT),
since comparisons with experiment are usually accomplished via such calculations [7, 8, 9]. SOC
transport calculations are possible in many DFT codes, but convergence may be intractable for
nano-systems involving more than a few tens of (heavy transition metal) atoms. In this work,
we present one-shot DFT electronic transport calculations based on the non-equilibrum Green’s
function (NEGF) method [8] using Gaussian-type orbital(GTO) basis sets that have been fitted
to high quality SOC bands.

2. Models
In 2018, Pakdel et al. [10] found that if a GTO basis set describes the band structure of a material
well in the absence of SOC, then adding SOC as a correction in a post self-consistent-field (SCF)
step gives good SOC bands, when compared to a reference method that produces very high
quality bands such as VASP [11], Wien2k [12], Quantum Espresso [13] or OpenMX [14, 15, 16, 17].
Pakdel et al.’s method [10] and our recent improvements thereupon are described very briefly
below.

The Dirac-Kohn-Sham Hamiltonian can be written, to lowest order, as the standard atomic
SOC matrix because the radial and angular components of the wave functions in atomic-orbital
based DFT, such as the GTOs used by CRYSTAL14 [18] or GAUSSIAN09 [19] are orthogonal:

ξ (r)L · S =
[
ξij

〈
li;mli ; s|L · S|lj;mlj ; s

′〉] , (1)

where:

ξij =
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rIn equation (2), Veff (r) = −Z is the effective nuclear potential [10], with Z the atomic number.
Ri (r) are the radial (un)contracted gaussian-type orbitals (CGTOs). Only CGTOs on the same
atom and of the same shell type (L = 1, 2 or 3) contribute to the integral because SOC is an
intra-atomic phenomenon [10]. However, for CGTO basis sets with pseudopotentials, Pakdel
et al. found that a single multiplicative correction to ξij was needed in order to account for
the correct effective charge in Veff (r) due to the lack of nodal structure near the nucleus in
pseudopotentials. Here, we make two minor modifications to improve the above implementation.
We use the following modified Yukawa screening potential:

Veff (r) =

{
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r
)

+1
]
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r r > rc

(3)
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where rc is a cutoff, typically the size of an atomic radius (∼ 2.5−3.0 a.u.). Instead of the single
global multiplicative factor used in ref. [10], we implement a multiplicative factor for each shell
type (L = 1, 2 or 3) to account for the fact that the radial SOC coefficients of different shells
are usually multiples of each other [20].

● Our method
✗ Ref. method

a)

b)

SOC = 0.0 SOC = 0.8 SOC = 1.0

Figure 1. (Colour online) a) Example of adding spin-orbit coupling as a post-SCF correction in
DFT calculations of the bands of a solid material, for b) Bismuth (111) bilayers. Solid markers
are our method and the fainter crosses correspond to the reference method. The same lattice
parameters were used in both methods as in ref. [10]: a = 4.33 Å and c = 1.74 Å in symmetry
group P 3̄m1 of the Hermann-Mauguin classification or space group 164 in the International
Tables of Crystallography.

3. Results and discussion
To verify that adding SOC as a correction in a post-SCF step gives good SOC bands, we use
Bi(111) bilayers (see figure 1 b)) as a test system and compare our calculations using CRYSTAL14

on one hand, and OpenMX as reference method, on the other, given the very good agreement
between OpenMX and Wien2k [21, 22].

In Bi(111) bilayers, starting without SOC in the left panel of figure 1 a), the band gap must
evolve first into a Dirac cone at the Γ point (SOC=0.8 in the middle panel of figure 1 a) ) and then
open up again as SOC is increased to 1.0 in a so-called “band inversion” in the rightmost panel
of figure 1 a). We used the high quality basis set from ref. [23] for Bi and the Perdew-Burke-
Ernzerhof (PBE) generalized-gradient approximation (GGA) exchange correlation functional in
our CRYSTAL14 calculation of the bands in the absence of SOC, resulting in reasonable agreement
with our reference method, using the Bi8.0-s4p4d3f2 basis set and Bi PBE19 pseudopotential
in OpenMX. We also used very large k meshes (81× 47× 1) in multiples of 3 to correctly capture
the electronic structure at the Γ point. In going from SOC=0.0 to SOC=1.0, we only tuned the
multiplicative factor empirically for the bands of p-orbital (L = 1 shell) character because only
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they contribute to SOC ±4 eV about the Fermi energy. Thus, in figure 1, SOC=0.8 corresponds
to using a L = 1 multiplicative factor SOCFACP = 270.0 and SOC=1.0, to SOCFACP = 350.0.

The ultimate goal of fitting SOC corrected bands to a reference method is to choose high
quality basis sets that can be used in DFT electronic transport calculations where transition
metal elements, sometimes with strong SOC, are used as the electrodes. We therefore need high
quality GTO basis sets for metals such Au, Ag and Cu, which are used in experiments [24, 25].
For the sake of brevity, we present only the SOC-corrected bands for two extreme cases (see
figure 2): face-centred cubic (FCC) Cu using an all-electron basis set [26] (all multiplicative
factors set equal to 1.0) and FCC Au using the high quality pseudopotential basis set reported
in ref. [23]. The latter required larger per-shell multiplicative factors, SOCFACP = 260.0,
SOCFACD = 40.0 and SOCFACF = 10.0 for the L = 1, 2, 3 shells respectively. The same lattice
parameters were used in our and the reference methods: 3.63 Å in the case of Cu and 4.05

for Au [23]. As basis sets and pseudopotentials in OpenMX, we used Cu6.0H-s3p3d3f1 and
Cu PBE19H for Cu and Au7.0-s2p2d2f1 and Au PBE19 for Au.

a)

b)

● Our method
 Ref. method

● Our method
 Ref. method
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Figure 2. (Colour online) a) SOC-corrected bands for face-centred cubic Cu obtained using 
the all-electron basis set reported in ref. [26] in CRYSTAL14 (red solid markers) and the reference 
method OpenMX (light blue crosses) b). SOC-corrected bands for FCC Au obtained using the 
pseudopotential basis set reported in ref. [23] in CRYSTAL14 (red solid markers) and the reference 
method OpenMX (light blue crosses). Notice that per-shell multiplicative SOC factors much larger 
than 1 were needed to get a good empirical fit in the case of Au.

Figure 3 illustrates two simple example applications of our post-SCF electronic transport 
implementation of SOC. For this, we use the code Atomistic NanoTransport (ANT.Gaussian)
[27, 28, 29]. It interfaces with Gaussian09 [19] to perform a scalar-relativistic, spin-unrestricted 
calculation of the transport. The SOC correction has been implemented in ANT.Gaussian and is 
freely available online [30]. The advantage of using ANT.Gaussian over other density functional 
theory (DFT) codes with a self-consistent SOC electronic transport capability, is that the 
calculation requires just one step unlike most of the other codes in which a one-dimensional
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electrode model is used [31, 32]. Moreover, our method displays better convergence properties
compared to other codes in the absence of SOC, such as our reference method OpenMX [33, 32].

The structure in figure 3 a) was taken directly from the online supplementary material of ref.
[4]. For Au and Cu, we used the basis sets referred to previously. For Ag, a pseudopotential
basis set giving good agreement with the reference method and similar to that of Au was used
[34]. As expected, the polarization in the molecule generally increases as the metal becomes
heavier and the intra-atomic SOC interaction becomes larger.

In figure 3 b), we show the manifestation of the classical spin-Hall effect in an unreconstructed
surface of Au(111). Broken inversion symmetry in thin samples or exposed surfaces of heavy
transition elements leads to the lateral separation of spins of roughly opposite orientation under
non-zero bias, 0.1 and 0.5 V, even in non-magnetic materials [35].

a)

b)

P = T ↑↑ + T ↓↑
−T↑↓

−T ↓↓

2T

Applied bias = 0.1 V Applied bias = 0.5 V

Figure 3. (Colour online) a) Polarization (P ) of the helicene molecule sandwiched between
Au, Ag or Cu electrodes (left) as a function of energy, calculated at zero bias voltage from the
spin-resolved transmission T σ,σ

′
, where σ, σ′ = {↑, ↓}. b). Spin densities along the z direction in

the Au ”table” shown on the left and calculated at bias voltages of 0.1 and 0.5 V, respectively.
Under non-zero bias, the classical spin Hall effect manifests as the lateral separation, along the
transport direction, of spins of approximately opposite orientation.

4. Conclusion
We have presented a post self-consistent field implementation of spin-orbit coupling in density
functional theory calculations on transition metals using Gaussian type local orbitals. The
ability of such basis sets to correctly reproduce the electronic structure of the metals is
established by comparing spin-orbit-coupling corrected bands with those generated by a fully
self-consistent implementation of the spin-orbit interaction. The transferrability of the basis
sets to density functional theory electronic transport calculations was established by performing
simple test calculations to reproduce phenomena that are known to trace their origins to spin-
orbit coupling: (i) chirality induced spin selectivity of organic molecules under zero bias and
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(ii) the manifestation, under non-zero bias, of the classical spin Hall effect in a thin non-
magnetic Au(111) surface. The advantage of our method is that the calculation is one-shot, i.e.,
requires only one step and also exhibits superior convergence properties compared to other fully-
relativistic self-consistent implementations. In future work, we will implement SOC-corrected
band fitting for magnetic systems and composite materials.
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